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Abstract—The strength of an eccentrically compressed wall is investigated by treating the wall as a beam—column.
The solution adopted is the column-curvature-curve method and the strength is subject to the criteria of stability
and strain limits. The material is assumed to be elastic—perfectly plastic. The yield stress levels in tension and
compression may be different. Strain limits for cracking and crushing are considered. Thus, the analysis is ap-
plicable to materials such as steel, unreinforced concrete, brick and masonry. In selected cases, comparison is
made with available and analytical results reported elsewhere and good agreement is observed.

1. INTRODUCTION

WALLS ARE generally treated as compression members in building design. The compressive
forces may be applied eccentrically on the walls. Further, bending moments are often in-
duced by rotation of the floor girders. The strength of a wall must hence be investigated
using beam-column analysis.

In a recent paper [4] solutions are derived for the computation of elastic deflections
and elastic stability of compression members made of materials which exhibit a linear
elastic relation between stress and strain in compression and no tensile strength. In Ref. [4],
the load is assumed to be applied only at an eccentricity equal to or greater than the kern-
eccentricity and smaller than half of the thickness of the member. Herein, a more general
solution to this problem will be attempted. In this paper, the material is assumed to be
elastic—perfectly plastic and the yield stress levels in tension and compression may be
different. In addition, the limited ductility or the strain limits of the material are con-
sidered for cracking and crushing. Thus, the analysis is applicable to solid prismatic walls
made of masonry, brick or unreinforced concrete as well as metals, since these materials
have properties similar to those assumed in this paper. Further, the point of load ap-
plication may be inside as well as outside the kern-eccentricity region. The Column-
Curvature-Curve method (CCC method) developed recently by Chen and Atsuta [2] is
used herein to perform the beam—column analysis.

The basic idea of CCC method is the same as that of Co]umn-Deﬂection-Curve method
(CDC method) in which the deflected axis of any column with different end moments can
be represented by a portion of the CDC’s, but the application of the CCC method is much
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simpler. The CCC method was developed in Ref. [2] using analytical curvature solutions
due to Chen and Santathadaporn [1], as the consequence, the equivalent column concept
is clear and becomes a powerful means to solve moment gradient problems.

For the case of metals, only three cases of equivalent columns cover all possible elastic—
plastic beam~columns [2]. Determination of the equivalent column length is the major
problem there, for which an iterative procedure is applied. Once the equivalent column
length has been known, the curvature distribution is uniquely given in an analytical ex-
pression, thus calculation of slope or deflection is straightforward by numerical methods.
Herein, the CCC method is extended to consider the materials described in this paper.

2. MATERIAL PROPERTIES
The material considered in this paper is elastic-perfectly plastic as shown in Fig. 1.
E = modulus of elasticity
a,, = tensile yield stress (positive)
0., = compressive yield stress (negative)

&, = cracking strain (positive)

o
]

., = crushing strain (negative)
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FIG. 1. Idealized stress-strain relationship.



Strength of eccentrically loaded walls 1285

The yield stresses and strain are defined using the ratio u and the absolute value g, of
the stress in compression.

Q

O,y = U6, O, = —0, &

= 2

Thus, the analysis is applicable, in general, to materials which have different strengths in
tension and in compression.

For idealized steel pu=1

For idealized masonry u =20 3)

- For idealized concrete 0 < u < 1.

3. MOMENT-CURVATURE-THRUST RELATIONSHIP

The wall has the thickness ¢ and the height h as shown in Fig. 2. The loads are the
axial force P on the midthickness and the two end moments M, and M,.

The material properties, the geometry and the loads are considered invariant along
the width. Hence, a wall with a unit width is considered in this report. Therefore, it is the
same as a rectangular beam—column of depth ¢, width 1.0 and length h.
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FiG. 2. Wall and beam-column.
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It is assumed that plane sections remain plane after deformation. Thus the strain
distribution is linear through the wall thickness. In terms of the mean strain ¢, and the
curvature @ (Fig. 3), the strain ¢ at location y from center line is

£ = Oy+sg,. (4)
€
2®
, ! .
cy [ €ty y
€ / Ny
€y &

L

FiG. 3. Linear distribution of strain.

The boundaries of compression yield y., and tension yield y,, are given by
1 1
Yy = a(sty"sm) Vey = a(ecy—sm)' (5)

Equation (5) has meaning only for

-% <Yy < % —% <Yy < % (6)
The stress is given by
ey <y
0= E@y+en) (VySy=<y ™
Oy ey < ¥)-

In order to derive simple expressions for axial force P and bending moment M, the
following specially defined parentheses are convenient for use.

(s {S 0<9) @)
“lo (s<o0.
Axial force and bending moment per unit width are
t/2 t/2
P= o dy M= oy dy. 9)

—-1/2 -t/2
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Using equations 7, § and 9

t/2 12
P = (E<l>y+Es,,,)dy-—J‘ {—EQ®y—Ee,+0.>dy
-t/2 -t/2
t/2 ;
- f {E®y+ Eg,~0,, dy (10a)
~1/2
12 t/2
M= (E®y+ Ee,)ydy+ f (—E®y—Ee,+0.,>ydy
~-1/2 ~t/2
1/2
- J‘ (E®y+ Ee,,—a,,)ydy. (10b)
-2

These may now be reduced to two simple equations using equations 2, 5 and 8 (Fig. 3),

E /ot 2 E /ot z .
P = E£mt+§5<?—8y—£m> —55<-§—"#8y+8m> {11a)
E®®* E /ot 2
M= T——é&i<—2-——8y—-8m> (¢t+8y+8m)
E /ot 2
_?665<7—’""+8"'> (O + pe, —&,,). (11b)

The equations are next simplified using nondimensionalized quantities

§g="2 F=2 (12)
Uy EY
P M L)
p P, m M, ® ey (13)
where
t? 2
P,=oy M, = G’Z o, = sy;. (14)

Also, henceforth, a positive value for p indicates compressive force. Thus equation (11)
becomes

= (P =1 =&~ (o= p )] (152)
@

m= <p~;$’;[<<p—1—ém>2(2<p+1+é,.)+<<p~u+é..>2(2<p+u—é,)1. (15b)

Elimination of &, from equations (15a) and (i15b) yields a relationship among the
bending moment m, the curvature ¢ and the thrust p in the elastic as well as elastic—plastic
regimes.

Since direct elimination is not possible, the m—@—p equations are derived in four
different regimes separately (Fig. 4).
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{a) Elostic Regime

m=¢

(b) Tension Yield Regime

m=3{x+p)-2

U W R W

($gy< dge  Pop <5 ¥yc)

(u+p)

¢

(¢} Compression Yield Regime
(Pgc <Py Poc* ¢ < Fcr)

{-pP
23{l-p) -2 —
m=3{l-p Y

(d} Combined Yieid Regime
(e <$ or $p <)

L 3U-pieep) Gi+p?

m
4.

AYARE

F1G. 4. m—p-p equations in regimes.

(a) Elastic regime (p < ¢, and ¢ < @,.)
Ep = —P
m= g,
(b) Tension yield regime (9., < ¢@,. and ¢, < ¢ < @,.)
&n = @ +u~2/lp{u+p)]

m = 3(u+p)-2\/[(ﬂ-;p)3].

(c) Compression yield regime (¢, < ¢.,and ¢,. < @ < ¢,)

&n = ~(1+9)+2/[o(1-p)]

m = 3(1-p)~2\/[uj:].
0

(d) Combined yield regime (¢,. < ¢ or ¢, < @)

_ @ 1"‘}1
= (1= —=2p)—
- 1+;1( B=2p)——
— 3

m =3Pt (L+p)”
1+pu 16¢*

164°

{16a)
(16b)

{17a)

(17b)

{(18a)

(18b)

(19a)

{19b)
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In the present analysis, only positive curvature is taken into account without violating
the generality. The boundary curvatures used in equations (16-19) are given by

Qo = +p (Elastic—tension yield)
Qec=1-—p (Elastic—compression yield)
(1+p)? : . 20
@ = Tension—compression yield) (20)
Wrp | pression ¥
(1+p)?

Oy = ——— Compression-tension yield).
qi-p TP g

The order in which the different distributions of stress as shown in Fig. 4(a—d) may
occur with increasing ¢ is of importance in the analysis. If the section is elastic throughout
under thrust p alone, its behavior under the bending moment m is initially governed by
Fig. 4(a). The addition of the moment m will increase ¢ and for some value of m, the section
will start to yield. Assuming the tension fibers begin to yield first, the behavior is now
governed by Fig. 4(b), and the boundary curvature between Fig. 4(a) and Fig. 4(b) is ¢,,.
If the curvature ¢ can further be increased to ¢,., the compression fibers also begin to
yield and for any value of ¢ > ¢, the behavior of the section is governed by Fig. 4(d). By
similar reasoning, the other sequence of yielding is Fig. 4(a, c) and finally 4(d) and the cor-
responding boundary curvatures between Fig. 4(a and c) and between Fig. 4(c and @) are
@, and @, respectively.

Comparing the two initial yield curvatures ¢,, and ¢,., it is known that

. 1— : o
if p < ——l, tension yielding occurs first

2
: (21)
if p> —;~#, compression yielding occurs first.
Using this relationship, equation (20) can be simplified to
I+u |1—p
Dets Poc = 2 - 2 p,—q)l
1+ (22)
@ues Py = 4 s = @,.
®,
Now there are only three regimes:
(a) Elastic regime (¢ < ¢,)
m = ag. (23)
(b) Tension or compression yield regime (¢, < ¢ < @,)
m=b~—— (24)

Jo
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(c) Combined yield regime (¢, < @)

f
m == (25)
where
a=1 b =3¢, c =2¢p}
3 —p) (26
P G [0} )
16 1+p

The m-¢-p relationships derived in Refs (1] and [2] for steel beam-columns and in
Refs. [3] and {4] for plain concrete and masonry walls are special cases of equations
(23-26) with u = 1.0 and u = 0 respectively.

4. STRAIN LIMITS

As one of the strength criteria, the wall is assumed to reach its ultimate state when the
strain at the extreme fiber reaches the strain limit of the material. The strain limits are
&, = crushing strain (negative) an
&, = cracking strain (positive).

Since the strain distribution is given by equation (4), these conditions are reached when

2,, = ®t+
co T 2 8m (28
Ot )
& = —2-+8m
or nondimensionally
+ g
b = { o (29)
-9 + &g

Substituting this &, into equations (16-19), the cracking curvature ¢,, and crushing
curvature ¢, are obtained as follows:

(a) Elastic regime (¢, < @1, @eo < ¢1)

(30)
Peo = ~ (80 +P)
(b) Tension or compression yield regime (¢, < @, < @2, @1 < Pp < ©3)
B = L4 (gt P~ (4= 7]
ORY) *

+ 3o +p) —(1+6,)%1

(pco 2
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(c) Combined yield regime (¢, < @,5, ©2 < Pc,)
1 ft4p 1=
‘pto - 1 _p\ 2 8!0 + 4

—1{1+pu_ 1—/,l2
_u+p( 2 feo t 4 |

(32)

Peo

5. COLUMN-CURVATURE CURVES

For a beam—column AB of length L which is subjected to an axial force P, bending
moments M, and M, at the ends, there is an equivalent column of length L* which is
subjected only to the axial force

* _ MA"MB 2
p -\/[P2+(———L———) ] (33)

v
My | g Ms

S
A——

I L |

f

p* I T P
A® c—t e —— EB B*

F1G. 5. Beam-column and its equivalent column.

The beam-column AB is a part of its equivalent column A*B* as shown in Fig. 5. The
proof is presented in Ref. [2].

Since the end curvatures ®, and ®, are known from end moments M, and M, using
the previously obtained moment-curvature—thrust relationship, the curvature distribution
along the beam—column AB is determined if the curvature distribution of the equivalent
column A4*B* (the column curvature curves) is known (Fig. 6).

There are five different types of equivalent columns as shown in Fig. 7. The governing
equation of a beam-column is

2
d A24+k2® =0
ax
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$m
Y
)
A* A B 8*
L
L’

F1G. 6. Curvature of beam-column A 8.

P*
ke \/(E) (35)

3

El = %—- (bending rigidity). (36)

in which

Using the previously derived moment-curvature-thrust relationships, (equations 23-25),
equation (34) may be reduced to a set of differential equations in ® and P only {2].

\ x Elastic Column

P Compression Yield Column

p* P*  ac<%at
-t Poc < ‘m‘ <y

. Tension and Compression Yield Column
B* PP Py <y
 E—— $1c<4m”
A ]

Compression and Tension Yiaid Column
Pac < Pot
LR N

F1G. 7. Five types of equivalent column.



Strength of eccentrically loaded walis 1293

For each type of column shown in Fig. 7, the curvature ¢ is not solved explicitly. In-
stead kx is obtained as a function of ¢. In the solution, the maximum curvature at the
center ¢¥ is included as an integral constant. Details of the solution for each case have
been reported elsewhere [2].

If the maximum column curvature ¢ is known, the location x, and x; corresponding
to the end curvatures ¢, and @p are obtained exactly from equations (22 to 35) of Ref. [2].
The actual value of ¥ must be searched by iteration until the computed length L, be-
tween x, and xz becomes close to the length L of the beam-column.

L~ L. (37)

The length L 5 is computed in four different cases as shown in Fig. 8. In each case, the
maximum curvature of the beam—column ¢,, and its location x,, are given by the following
equations.

(a) Single curvature (¢ 05 = 0)
Type 1.
Lyg = xg—x,

(38)
Om = Qa0 X = 0.

‘:n . Single Curvature (¢,.¢ 2 0)

Type |

Lag*%p " %a
¢m=¢l ¥ =0

Type 2

Lag**a* %

Y =
¢m'¢m v Xm = XA

Double Curvature (¢A %, < 0)

Type !
Lag® " - —xg
¢m=¢A v *m © o

Type 2
Lag =L + % -%p

¢m= 4’,; » Xm 7 Xa

FiGc. 8. Computation of column length L ;.
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Type 2.
LAB = Xp + X4 (39
O = @:7xm = X4-
(b} Double curvature (@ 05 < 0)
Type 1.
Lyg=LY-x,—x
AB A B (40
Om = Pus X =0.
Type 2.
Lyg=L*+x,—xp @1
Pp = q’;!xm = X4
In the above derivation, it is assumed (without loss of generality) that
losl < 9,4 (42

6. NUMERICAL EXAMPLES

Results of some numerical calculations are presented in Figs. 9 and 10. The ordinate
is the axial force p and the abscissa is the maximum curvature of the wall ¢,. The p—o,,
planes are divided by the two dotted lines ¢, and ¢, into four regimes: the elastic regime,
tension yield regime, compression yield regime and the combined yield regime. The thick

#20
€, =0.00125
Crushing Strain €eo merp
qe. -2 3 -4 .8 mg2p (e 21/6)
1.0 i—’
\ \ \“‘Q\ﬂ“ _‘1” - ——————C
\ ‘\.ﬂ - o
i \ot - g _ .
gﬂ‘ - W
08 '}\ o e s
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a 06 ,E \ Il 10 \_~ v S g‘
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& € X <
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04 —5
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ar ; ‘ *
Q 0 sion Yielg Rt I == == === -
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Fi1G. 9. Load-curvature curves of masonry walls.
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FiG. 10. Load curvature curves of concrete walls.

solid lines represent load curvature curves for various slenderness ratios of h/t. Each curve
consists of a loading portion and an unloading portion. The peak points indicate the
stability limit of the walls. Strain limits are plotted by thin solid lines.

The stability limits (peak points) occur just after tension yield. Unloading takes place
mostly in the combined yield regime except for tall walls with no tensile strength (u = 0,
h/t. > 30).

Figure 11 shows stability limits of walls with varying tensile strength (1 = 0 to 1.0).
It should be noted here that a small amount of tensile strength (u = 0-1) improves the
strength of walls considerably. Thus the tensile yield stress should not be neglected in
analysis of plain concrete or masonry walls, Tensile yield stress greater than half of com-
pressive yield stress (u > 0-5) has no effect except for very short walls (h/t < 10).

Figures 12 and 13 show the ultimate strength of a wall due to strain limits of p = 0
and p = 0-1 respectively. The thick solid line shows the stability limit. The dotted lines
and thin solid lines represent crushing failure and cracking failure, respectively.

Crushing occurs only in shorter walls but cracking occurs in most walls. A small
amount of ductility improves the strength of the wall considerably. This effect is noticeable
especially during cracking in masonry wall (Fig. 12). Large ductility (¢,, > 0-5¢, le.o| > 2¢,)
has little effect on strength of walls.

Figure 14 shows the stability limit of a wall (4 = 0 and 0-1) against different types of
loading. The parameter X is ratio of end moments (*# = my/m,). Three loading cases
are investigated: symmetric loading (" = 1), one moment loading (X" = 0) and anti-
symmetric loading (¥ = —1).
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08

AXIAL FORCE p= P/Py

] ! | J !
0 10 20 30 40 50

SLENDERNESS RATIO , h/t

FiG. 11. Strength of wall with various materials.

The strength of the wall under unsymmetric loading (X = 0, —1) is considerably
greater than that in the symmetric case. This is because of the difference in the critical
length. Also, in these cases, the plastic hinge occurs at an end and the strength becomes
constant when the wall is short (Fig. 14).

7. COMPARISON WITH REPORTED RESULTS

In Ref. [4], analytical and experimental ultimal strengths of walls are reported. In the
analytical part Yokel [4] assumes that the material has no tensile strength (u = 0). The
compressive crushing strain limit ¢, is the same as the initial yield strain ¢, (¢, = &,
= —g,) and the tensile strain limit is not defined (g, = o). The loading is symmetric
(A = 1) but eccentricity of the axial force is variable (¢ = ¢/6 and-¢ = /3 are taken in
the example). The yield strain is ¢, = 0-001215 in pure compression. Strength in flexure is
assumed to be 1-6 times the strength in pure compression (g, = 0-001944). Results of
Ref. [4] are plotted by open circles in Fig. 135.

To recompute these analytical results using the approach here, the ultimate strength
of the walls is investigated in four cases. In Fig. 15, the solid curves (a) and (b) represent
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FiG. 12. Ultimate strength due to strain limits.

stability limits of the walls with ¢, = 0001215 and ¢, = 0-001944, respectively. Since
there are strain limits (¢, = ¢, = —¢,), the strengths are reduced to the dotted lines
(a’) and (b"). Applying the factor 1-6 to the p-value of the curve (b'), the crushing strength
curve (c) is obtained. The ultimate strength is represented by the stability part of curve (a)
and crushing part of curve (c). Figure 15 shows good agreement between the two analytical
results in both cases of eccentricity. It should be emphasized, however, that the experi-
mental results reported by Yokel [4] showed a considerable scatter about his analytical
curves, especially for the case e = /3.

8. SUMMARY AND CONCLUSIONS

A method to analyze strength of walls of general materials is presented. An elastic—
perfectly plastic material is considered. The yield stresses and limited ductility or strains
in tension and compression may be different. In the analysis, the column-curvature-curve
method is used.

The loadings are axial compression and bending moments at the ends, which may be
unsymmetric. Further, the end moments are not necessarily due to eccentricity of the
axial force, they may be applied independently.

The small tensile strength and ductility of plain concrete or masonry are found to have
a significant effect on the strength of walls and should not be neglected in analysis. For
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FiG. 15. Comparison with Ref. [4].

unreinforced concrete, brick or masonry walls, compressive ductility greater than twice
the initial yield strain ¢, and tensile ductility greater than half the initial yield strain &,
are desirable features.

A good agreement was observed in some special cases with other reported results.
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AbGcrapkr-—HconenyeTes conpOTHBIACHUE IKCLEHTPHAHO CXATO# CTeHbt, 00CYXOas 3Ty CTEHY B BuIE
B6anku-kononunl. TIPHHATOE DEIUCHHE ABARCTCA METONOM KDWBOH M3ruda KOMOHHBI M COMPOTHBAECHHE
MOAYHHACTCA KPHTEPHAM YCTOAMMBOCTH ¥ npeaenam aedopmauuu. [Ipeanonaraerca marepuan ynpyro-
RACANBHOMNACTHHCCKHA. YDOBHM [MAACTHHECKHX HANPRKEHHH OAA CKATHA ¥ DACTRKCHHN MOTYT Obith
pa3sbie. PaccMATPHBAIOTCA npeacisl nedopMaunu 4R oOpa3OBAHMA TPEUIMH H Da3daBiMBanmna. 3aTem
AHANTH3 MOXHO HCTIONb30BATh K MOBCACHWIO TAaKHX MATEPHAJOB, KAK CTafb, HEAPMUPOBAHHLIA Oetow,
KHPITHY UM XMpnuyHas knaaka. Jdna n3bpaHubix cilyvyaes, JaCTCA CPABHEHHE C OOCTYMHBIMHM AHAIHTHY=
€CKMH PE3y/IbTATAMM, IPEIIONKEHHBIMHU e HUGy ab B APYroM MecTe, 1 HabmonaeTca Haanexalllee cornacue.



